
LEOTP: An Information-centric Transport Layer
Protocol for LEO Satellite Networks

Li Jiang∗, Yihang Zhang∗, Jinyu Yin∗, Xinggong Zhang∗, Bin Liu†
∗ Wangxuan Institute of Computer Technology, Peking University, Beijing, China

† Department of Computer Science and Technology, Tsinghua University, Beijing, China
{jl99888, zhangyihang, yinjinyu, zhangxg}@pku.edu.cn, {liub}@tsinghua.edu.cn

Abstract—Low Earth orbit (LEO) satellite networks have
attracted extensive research due to their potential to provide
high-quality Internet access services. However, the existing TCP
variants, which are designed for terrestrial networks, can hardly
work in LEO satellite networks with characteristics such as error-
prone, bandwidth variations, and link switching. To address these
challenges, in this paper we present a new information-centric
transport layer protocol LEOTP to guarantee reliable, high-
throughput, and low-latency data transmission in LEO satellite
networks. It leverages the idea of Information-Centric Network-
ing (ICN) with a Request-Response transmission model and in-
network caching. The connectionless transmission paradigm in
LEOTP makes it resilient to dynamic topology changes. The
caches equipped in intermediate nodes help to recover packet loss
while the hop-by-hop congestion control mechanism provides a
fast reaction to time-varying network conditions. We evaluate the
performance of LEOTP in emulated Starlink constellation, which
shows that it increases the throughput by 8%-12% with 40%-
60% delay reduction compared with the state-of-the-art TCP
variants in the transcontinental data transmission.

Index Terms—LEO, satellite networks, transport layer proto-
col, ICN, segmented transmission control

I. INTRODUCTION

In recent years, low Earth orbit (LEO) satellite networks
are fast emerging. As of 2 December 2022, SpaceX has
launched 3,558 Starlink satellites [1]. OneWeb [2], Ama-
zon [3], Telesat [4], and more players are entering the market.
As Starlink’s slogan says, the LEO satellite network aims
to provide “High speed, Low latency broadband connectivity
across the globe”. Compared with the terrestrial network, the
LEO satellite network could easily cover wide areas at a
low cost, while compared with the geosynchronous-equatorial-
orbit (GEO) satellite network it has much lower latency. Due to
these inspiring features, the LEO satellite network is regarded
as an important part of the next-generation networks called
Space-Ground Integrated Network (SGIN).

One urgent issue is emerging: While the highway is ready,
where is the safety belt? It’s well-known that in today’s
Internet, TCP is the safety belt to provide reliable end-to-
end transmission. However, TCP is designed for terrestrial
networks, its performance is poor in the error-prone, highly-
dynamic LEO satellite network.

The recent measurement study on Starlink [5] indicates that
the packet loss rate (PLR) and the latency are high in LEO
satellite networks. First, although inter-satellite links (ISL) are
not currently enabled, the PLR on ground-satellite links (GSL)

0 100 200 300 400
Bandwidth(Mbps)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

D
en

si
ty

(a) Bandwidth distribution in Starlink

B
an

d
w

id
th

Time

end-to-end RTT

queuing

length sending rate

(b) Queuing due to bandwidth vari-
ations

Fig. 1: Bandwidth variations and delayed feedback results in
congestion in LEO satellite networks.

is 1.56% for downloads and 1.96% for uploads [5]. This
deteriorates the throughput of the loss-based TCP variants.
Besides, the lost packets have an extra retransmission delay of
at least one Round-Trip Time (RTT), which is large in long-
distance communications. Second, for single-flow data transfer
from Belgium to European destinations in the Netherlands and
Germany, the median and 95th percentile RTT are 95ms and
175ms [5]. This makes TCP hard to support latency-sensitive
services. As the propagation delay to those destinations is only
at the order of 20ms [5], the rest of the latency is caused by
queuing in the network. So the congestion is significant in
LEO satellite networks.

The bandwidth variation with delayed feedback is a major
reason for the large queuing delay. Fig. 1a shows the distribu-
tion of Starlink’s download bandwidth according to the data
published by [5]. The fast movement of LEO satellites results
in frequent handover and routing switching, which makes the
connection intermittent [6]. The link quality and connectivity
of GSLs are also highly-related to the weather condition [7].
Therefore, the bottleneck bandwidth in LEO satellite networks
is time-varying, ranging from 2Mbps to 386Mbps. Meanwhile,
TCP relies on end-to-end feedback control. The congestion
signals are carried in ACKs echoed by the receiver. As shown
in Fig. 1b, when the bandwidth drops suddenly, the sender
cannot adjust its sending rate in time with the long feedback
cycle of an end-to-end RTT. Then the packets start to queue at
the bottleneck, which increases the latency and causes packet
loss when the queue is filled up.

Our key insight is that these problems can be solved by
segmented transmission control. Under this scheme, retrans-
mission and congestion control are performed at each individ-

ual hop. First, the in-network retransmission enables packet
loss to be detected and repaired locally, which reduces the
recovery time and bandwidth consumption of retransmissions.
Second, the hop-by-hop congestion control has a lag time
much shorter than the end-to-end RTT. So it can react quickly
to bandwidth variations, achieving lower latency and higher
throughput accordingly.

However, the design of segmented transmission control is
not trivial. Split TCP [8]–[10] is a well-known existing solu-
tion. It uses proxies to break the end-to-end connection into
independent TCP connections by hop. But this straightforward
method does not work in LEO satellite networks. There are
three crucial technical challenges:

(i) How to keep the connection in dynamic topology?
Split TCP builds a connection on each hop. However, the
connection state kept by an intermediate node is lost when
the node is moved away, which interrupts data transfer.

(ii) How to achieve end-to-end reliability? Split TCP
provides per-hop reliability, while end-to-end reliability is not
guaranteed. When an intermediate node removes from the path
in link switching, the packets buffering on it are lost and will
not be repaired. Therefore, the end-to-end reliability is broken.

(iii) How to avoid backlog at intermediate nodes? If each
hop controls traffic independently, the queue will build up at
intermediate nodes due to the bandwidth difference between
adjacent hops, resulting in even higher end-to-end latency.

In this paper, we propose an information-centric trans-
port layer protocol LEOTP to address these challenges. It
leverages the ideas of the Request-Response model and in-
network caching from Information-Centric Networking (ICN).
The end receiver issues data requests and waits for data to
be returned. Any node, i.e. data source or an intermediate
node with cache, can respond with the requested data. The
receiver re-issues a request for data not received with a
timeout mechanism. The intermediate nodes detect packet loss
by the sequence number of received packets and retransmit
locally. The congestion control is performed at each hop. First,
under the pull-based transmission, only the receiver records
the states of ongoing packets. The intermediate nodes are
dummy nodes, so LEOTP is resilient to the dynamic topology.
Second, LEOTP has a hybrid retransmission mechanism. The
receiver-driven retransmission provides end-to-end reliability,
while the retransmission on each hop minimizes the delay
and bandwidth consumption of data recovery. Third, to avoid
lost packets to be detected repeatedly by intermediate nodes,
LEOTP uses the Void Packet Header (VPH) mechanism.
Packet headers are sent to downstream nodes as notifications
when detecting packet loss. Fourth, LEOTP combines a back-
pressure algorithm with the hop-by-hop congestion control
to coordinate the sending rate between hops. So the packet
backlog at intermediate nodes is avoided.

We implement LEOTP based on UDP, without requiring
modifications to the lower layers. We carry out extensive
experiments to evaluate its performance. Compared with the
state-of-the-art TCP variants, (1) in the controlled experiments,
LEOTP achieves 12% higher throughput under high PLR

and 46% latency reduction under bandwidth fluctuations. (2)
LEOTP has good fairness between flows with different RTTs.
(3) In the Starlink emulation experiments, LEOTP increases
end-to-end throughput by up to 8% with 40% lower latency on
the Beijing-New York link. (4) To save costs, the intermediate
nodes can be deployed on part of the satellites. LEOTP can
achieve 6% higher throughput and 42% lower latency at only
25% coverage in the same environment.

In summary, our specific contributions are:
• A discussion of the limitations of end-to-end transport

protocols in LEO satellite networks.
• An information-centric, cache-assisted transport protocol,

called LEOTP, achieves reliability, high throughput, and
low latency in LEO satellite networks. The code and key
results in this paper are publicly available [11].

• A novel in-network retransmission mechanism using
VPH as notifications, which reduces redundant retrans-
missions while providing fast loss recovery.

• A backpressure-based hop-by-hop congestion control that
provides quick reactions in long-distance networks.

• An evaluation of LEOTP in a large-scale emulated con-
stellation with multiple ground stations and satellites.

II. MOTIVATION AND CHANCE

In this section, we will analyze the problems of the existing
methods, and discuss what is required for a transport protocol
that fits LEO satellite networks.

A. TCP’s Performance Degradation in LEO Satellite Networks

To demonstrate how high PLR and bandwidth variations in
LEO satellite networks degrade the performance of TCP, we
perform a set of simulation experiments. The link parameters
are chosen close to the real network environment.

High PLR degrades the throughput of TCP. Besides
packet loss on GSLs, recent studies [12], [13] suggest that ISLs
are also error-prone with PLR of 1%. This implies that once
ISLs are enabled, the end-to-end PLR will grow proportionally
with the hop count and reach up to 5%. In Fig. 2, we set each
hop with 20Mbps bandwidth, 10ms RTT, and 0.5% PLR. The
throughput of the loss-based congestion control algorithms
Cubic [14] and Hybla [15] decreases dramatically to less than
2Mbps when the hop count is 5. This is because all loss events
are ascribed to congestion, causing an unnecessary decrease
of congestion window. The state-of-the-art algorithms BBR
[16] and PCC [17] are loss-insensitive, so their throughput
degradation due to packet loss is not severe when the hop
count is small. However, when the hop count increases to 10
with the end-to-end PLR of 5%, the throughput of BBR and
PCC also decreases by 9% and 33% respectively. For BBR,
an important reason is that the lost packets are retransmitted
over the entire link, taking up a non-negligible amount of the
bottleneck bandwidth. Meanwhile, although PCC is not loss-
based, it is also not robust enough against high PLR.

High PLR results in a high tail latency for TCP. The data
retrieval delay of those lost packets is at least one RTT larger
than normal packets. This is due to the fact that TCP uses an

2 4 6 8 10
Hop count

0

5

10

15

20

Th
ro

ug
hp

ut
(M

bp
s)

BBR
PCC
Hybla
Cubic

Fig. 2: The throughput degradation
in error-prone links.

0 100 200 300 400 500 600 700
OWD(ms)

0.90

0.92

0.94

0.96

0.98

1.00

C
D

F

end to end
hop by hop

Fig. 3: Theoretical per-packet OWD
distribution under end-to-end and
hop-by-hop retransmission.

200 400 600 800
OWD(ms)

0

5

10

15

20

Th
ro

ug
hp

ut
(M

bp
s)

BBR
PCC
Hybla
Cubic
BBR split
PCC split
Hybla split
Cubic split

Fig. 4: Throughput-OWD trade-off
for Split TCP and TCP

20 40 60 80 100
Propagation delay(ms)

0

50

100

150

200

Qu
eu

in
g

de
la

y(
m

s)

BBR
Hybla
Cubic

(a) Queuing delay

20 40 60 80 100
Propagation delay(ms)

0

1

2

3

4

5

Co
ng

es
tio

n
lo

ss
(%

) BBR
Hybla
Cubic

(b) Congestion loss

Fig. 5: The queuing delay and congestion loss under different
propagation delay in bandwidth fluctuations.

end-to-end retransmission mechanism, which means the packet
loss is not detected until the data reaches the receiver and can
only be repaired by the sender. Fig. 3 shows the theoretical one
way delay (OWD) distribution in a 10-hop network, each hop
has 0.5% PLR and 10ms delay. We can see there is a long tail
under TCP’s end-to-end retransmission. Of the 100000 packets
we simulate, the 99th percentile and the maximum OWD are
300ms and 700ms respectively. This long tail makes TCP hard
to be compatible with latency-sensitive applications.

TCP has a high queuing delay under bandwidth vari-
ations. Fig. 5 shows the queuing delay and congestion loss
under different propagation delays. The average bottleneck
bandwidth is 10Mbps and fluctuates as a square wave with
a fixed period (2s) and amplitude (1Mbps), the bandwidth of
all other segments is 20Mbps. BBR is a typical delay-bounding
algorithm. It periodically probes the bandwidth and adjusts its
sending rate accordingly, aiming to work at an empty queue
and provide low latency. The loss-based Cubic and Hybla
are presented as references. As the maximum RTT between
city pairs will be over 150ms with ISLs [18], the maximum
propagation delay is set to 100ms. In Fig. 5a, Cubic and
Hybla maintain a stable but large queuing delay of over 100ms
because they keep increasing the congestion window until the
bottleneck buffer is full. When the propagation delay is 20ms,
BBR has an average queuing delay of 32ms. As the feedback
cycle increases with the propagation delay, its queuing delay
increases constantly and can be even higher than the loss-
based algorithms. This is because BBR has a longer lag time
to probe the change of bandwidth. It fails to adjust the sending
rate promptly, leading to severe congestion. In Fig. 5b, the
congestion loss increases with the propagation delay for all the

algorithms, as they take a longer time to react when congestion
occurs, causing more packets to overflow from buffers.

B. Potential Improvement of Segmented Transmission Control

We validate that segmented transmission control has certain
advantages in LEO satellite networks. First, it reduces the cost
of retransmission. When enabling in-network retransmission,
the lost packets can be retransmitted locally on each hop. For
a network of N hops, each of which has PLR p, propagation
delay d, and bandwidth b, the end-to-end PLR P is as (1):

P = 1− (1− p)N ≈ Np (1)

On the one hand, the recovery delay is shortened from the
end-to-end RTT to only one hop RTT (hopRTT). So the av-
erage OWD under end-to-end and hop-by-hop retransmission
are calculated as (2), (3), where k is the retransmission times.

OWDete =

+∞∑
k=0

(1 + 2k)Nd(1− P)(P)k ≈ Nd · 1 +Np

1−Np

(2)

OWDhbh = N

+∞∑
k=0

(1 + 2k)d(1− p)(p)k = Nd · 1 + p

1− p
(3)

On the other hand, the extra bandwidth consumption for
retransmission is limited to one hop. Specifically, for packet
loss that occurs on non-bottleneck links, the retransmission
does not occupy the bottleneck bandwidth. So the theoretical
upper bound of throughput under end-to-end and hop-by-hop
retransmission can be calculated as (4) and (5) respectively:

Throughputete =
b∑+∞

k=0 P
k
≈ b(1−Np) (4)

Throughputhbh =
b∑+∞

k=0 p
k
= b(1− p) (5)

So compared with end-to-end retransmission, hop-by-hop
retransmission has 1−p

1−Np times the theoretical throughput
and (1+p)(1−Np)

(1−p)(1+Np) times the average OWD. Taking an exam-
ple, when N = 10, p = 0.5%, hop-by-hop retransmission
achieves 4.7% higher theoretical throughput and 8.7% lower
average OWD. Meanwhile, the tail latency obtains a more

significant improvement. The OWD distribution under hop-
by-hop retransmission is also plotted in Fig. 3. The 99th
percentile and the maximum OWD decrease to 120ms and
160ms respectively, which efficiently mitigate the long tail.

Second, segmented transmission control has a faster re-
action to the varying bandwidth due to its reduced feedback
loop. When the bandwidth drops instantly, any node can sense
the congestion from the feedback provided by its neighboring
nodes. So it can make adjustments rapidly to avoid congestion.
As a result, the queue generated by overshoot is much shorter
than that of end-to-end congestion control. And when the
bandwidth increases, it can also probe the spare bandwidth
immediately and increase its sending rate. This indicates that
hop-by-hop congestion control has the potential to achieve
both lower latency and higher throughput under the bandwidth
variations in LEO satellite networks.

Third, segmented transmission control improves the end-to-
end throughput under high PLR. We prove this by combining
Split TCP with different congestion control algorithms, as
shown in Fig. 4. The experiment is performed in a 10-hop
network, with 20Mbps bandwidth, 10ms RTT, and 0.5% PLR
on each hop. Compared to the end-to-end link, each hop has a
better link quality with a much lower PLR and RTT. So Cubic
and Hybla reduce the congestion window less frequently and
their throughput increases significantly from less than 2Mbps
to over 14Mbps. Meanwhile, BBR and PCC also have 13%
and 30% throughput improvement when being split.

C. Design Challenges

While we are motivated to enable segmented transmission
control in LEO satellite networks, we notice that the straight-
forward method of split TCP faces several problems. We
summarize these as the design challenges for our proposal.

Support for mobility. To enlarge the benefits of segmented
transmission control, it is necessary to use LEO satellites as
intermediate nodes. However, Split TCP establishes a connec-
tion for each hop during the handshake between the sender
and the receiver, and the connection states are kept by the
intermediate nodes. In LEO satellite networks, a satellite can
be moved away in a short time. In this case, the endpoints can
not perceive that it has been removed from the path and will
not re-establish the connections. Its upstream node still tries
to forward data to it. So all the packets are dropped and the
end-to-end data transfer is interrupted.

End-to-end reliability. The reliability of Split TCP is
provided by retransmission at each hop. However, even if the
transmission at each individual hop is completely reliable, end-
to-end reliability is not guaranteed. The key reason is that
packet loss may occur on the intermediate nodes rather than
on a hop. This can happen when an intermediate node removes
from the path due to link switching. The packets in its buffer
are lost and can not be repaired. This is because the upstream
node believes the data is delivered correctly as it has been
ACKed, and the downstream nodes are unaware of the data.

Packet backlog at intermediate nodes. Split TCP performs
independent flow control for each hop. Each node treats its

Application

Consumer Midnode

Congestion

control

Producer

Data

Cache

Lower layer Lower layer

LEOTP

Data

Interest Interest

Loss

detection

Loss

detection

Congestion

control

Cache

Application

Lower layer

Loss

detection

Congestion

control

Cache

Fig. 6: The overview of LEOTP architecture.

downstream node as the actual receiver, sending as much data
as possible regardless of the throughput of the next hop. The
throughput difference between adjacent hops causes data to
accumulate in the intermediate nodes’ buffers, resulting in
extremely high latency. We also present the latency of Split
TCP in Fig. 4. For all the algorithms, splitting brings an extra
queuing delay at intermediate nodes of more than 600ms.

III. DESIGN

In this section, we present the architecture of LEOTP and
introduce our design for the two key modules: retransmission
and congestion control.

A. System Overview

Fig. 6 shows the architecture of LEOTP. A path consists
of a Consumer, a Producer, and several Midnodes. The end
receiver is the Consumer, whose application layer finally
”consumes” the data. The data source is the Producer, whose
application layer ”produces” the data. The ground stations
and LEO satellites are Midnodes, which refer specifically to
intermediate nodes in LEOTP. They have no application layer
and are used to enhance the performance of LEOTP. The
transport layer is segmented hop-by-hop by the Midnodes. To
enable transmission control at each hop, the Loss detection
module and the Congestion control module are deployed at
every nodes. Each node is also equipped with a Cache to
provide local storage for data packets.

The transmission in LEOTP follows the Request-Response
model. With the information-centric paradigm, each piece of
data has a location-independent name. It is composed of the
FlowID (i.e., the unique identifier of a flow) and its byte-
level range in the flow. When a Consumer wants to fetch a
piece of data from a Producer, it sends a data request (Interest)
to the Producer by its name, then waits for the data. As
LEOTP decouples the information of location and naming
of data, the requested data can be responded from either the
Producer or any hitting cache on the path. So the data transfer
in LEOTP is connectionless. The Midnodes are dummy nodes
keeping few connection states. They just perform cache lookup
and respond data according to the name parsed from the
passing Interests. When moved away or disconnected, they
do not need to migrate their states to other nodes. In this way,
LEOTP supports the mobility of intermediate nodes.

Interest

Data

Interest

Data

Cache
missing

Miss?

hitting

store

Congestion

control

Loss

detection

Sending

buffer

Fig. 7: The key modules in a Midnode.

LEOTP takes the idea of segmented transmission control.
The local retransmission at each hop aims to minimize the
network cost and the hop-by-hop congestion control provides
a quicker reaction to varying network conditions. We illustrate
how they work through Fig. 7. First, the local retransmission
is supported by the Cache and the Loss detection module.
The Midnode performs loss detection locally by monitoring
the received data. When a packet loss is detected, it sends an
Interest to its upstream node for retransmission. Meanwhile, a
node stores the data in its Cache while forwarding it. When
receiving an Interest, a node searches its Cache and tries
responding to the Interest first. So the lost packet can be
recovered from the upstream node immediately. Second, to
enable hop-by-hop congestion control, each Midnode has a
sending buffer. All the data needs to be forwarded is queued
in the sending buffer, and the sending rate is decided by its
Congestion control module.

B. Reliable Transmission

LEOTP uses a hybrid retransmission mechanism to en-
able end-to-end reliable transmission. The Consumer-driven
retransmission guarantees end-to-end reliability at the last
sort, while the in-network retransmission recovers most of
the packet loss at a minimal cost of latency and bandwidth
consumption. Specifically, the Consumer-driven retransmis-
sion is called Timeout Retransmission (TR), which is based
on a timeout mechanism. And the in-network retransmission
is named as Sequence Hole Retransmission (SHR), as each
node detects packet loss according to the sequence numbers
of the received data.

TR. The basic idea of TR is shown in Fig. 8a. The
Consumer records the sending time of each Interest, and peri-
odically checks all the unsatisfied Interests. If an Interest has
not been satisfied by its requested data after Retransmission
TimeOut (RTO), it will be resent by the Consumer. The RTO
is calculated by the smoothed RTT (SRTT) and the variance
of RTT (RTTVAR) like TCP according to the algorithm in
RFC6298 [19]. When an Interest has experienced multiple
timeouts, the resending interval will grow exponentially by
1.5 each time, until the data arrives.

SHR. In SHR, each node detects packet loss locally by
the sequence numbers. When a packet’s sequence number is
greater than what is expected to be received next, a ”hole”
appears between this packet and the previously received pack-
ets. If the hole is not filled by the following few packets, it is

Consumer

Resend

Interest

Data

Packet loss

T
im

eo
u

t

Producer

(a) TR mechanism

Data

Midnode

1

Packet

loss

Send Interest

for packet 2

Void Packet

Header

Hole detected

Forward

Downstream

node

Upstream

node

2

3

4

5

5

4

3

2

1

1

3

4

5

(b) SHR mechanism

Fig. 8: The hybrid retransmission mechanism.

supposed that packet loss has occurred and an Interest is sent
to request the corresponding byte range of data.

However, duplicate retransmission is a potential problem
for SHR. Since the Midnodes just forward data packets with-
out waiting for reordering or retransmission, when a sequence
number hole is detected by a Midnode, it will also be detected
by all the downstream nodes. If each of these nodes sends
an Interest respectively, the lost packet will be retransmitted
repeatedly, resulting in a severe waste of bandwidth.

LEOTP uses the Void Packet Header (VPH) mechanism to
solve this problem. When a Midnode detects a hole, it will
generate a Void Packet Header with the same byte range as
the hole and send it downstream immediately. When receiving
this header, its downstream nodes are notified that the hole
has already been detected by the upstream nodes and then
ignore it. In this way, all the downstream nodes will not issue
an Interest for retransmission. The retransmission only takes
place in the hop where the packet loss occurs. Specially, when
the Consumer receives a header, it will reset the timestamp of
the corresponding Interest to avoid the timeout being triggered
before the data retransmitted by SHR arrives.

Fig. 8b shows an example of SHR. The upstream node
sends 5 packets and packet 2 is lost. When having received
packet 3, the Midnode detects packet 2 as a hole since the
sequence number is not continuous. It then generates a header
for packet 2 and sends it downstream. After receiving packet
4 and packet 5, the Midnode confirms that packet 2 is lost
and sends an Interest to the upstream node for retransmission.
The downstream node, however, has received the header of
packet 2 before receiving packet 3. So it perceives continuous
sequence numbers and does not regard packet 2 as a lost
packet. Then packet 2 is only retransmitted between the
Midnode and the upstream node, thus duplicate transmission
is avoided.

Algorithm 1 presents the detailed algorithm of SHR.
LEOTP is a byte stream protocol. Each data packet carries
its byte-level range [rangeStart, rangeEnd). The Midnodes
keep track of the largest sequence number seen for a flow,
which is named as lastByte. When a data packet or a header
is received, it is processed according to its range:

(1) In-sequence packet. It is the common case when the
packet is what is expected to be received next. It is forwarded
directly without additional processing.

Algorithm 1 Loss detection algorithm in SHR

Input: the threshold for disordered packets N

1: SeqNumHoles← {}
2: while recvData() do
3: [rs, re)← newPacket.range
4: if rs > lastByte then
5: generate and send header [lastByte, rs)
6: insert [lastByte, rs) to SeqNumHoles
7: else if rs < lastByte then
8: delete [rs, re) from SeqNumHoles
9: end if

10: for hole in SeqNumHoles do
11: if rs > hole.rangeEnd then
12: hole.count← hole.count+ 1
13: if hole.count > N then
14: send Interest for hole
15: remove hole from SeqNumHoles
16: end if
17: end if
18: end for
19: lastByte← max(lastByte, re)
20: end while

(2) Out-of-sequence packet whose sequence number is
greater than the last received. It is the case when the packet’s
rangeStart is greater than the current lastByte. A hole
is detected, which means its previous few packets have not
arrived. They can be lost or delayed by the network. First,
the Midnode generates a packet header for the hole, and
forwards it before this packet to notify the downstream nodes.
To distinguish whether a hole is caused by packet loss or by
disordering, LEOTP does not send a retransmission Interest
immediately when a hole is detected. Instead, the hole is
recorded in SeqNumHoles with count representing the times
it is skipped by the following packets. All the received packets
update the count of holes in SeqNumHoles according to
its byte range. When a hole’s count reaches the threshold
N , an Interest is issued to request the lost packet. Then the
hole is deleted as SHR does not keep track of whether the
retransmission is successful or not.

(3) Out-of-sequence packet whose sequence number is less
than the last received. It is the case when the packet’s
rangeStart is less than the current lastByte. The Midnode
has already received some of the following packets. The packet
may be a retransmitted packet or a disordered packet delayed
by the network. The Midnode will search its SeqNumHoles
and delete the holes that overlap with its range, as the data
has already arrived and does not need to request again.

C. Backpressure Congestion Control

LEOTP performs hop-by-hop congestion control, combined
with a backpressure mechanism to coordinate the sending
rate between hops. The basic idea of backpressure is: if
the downstream sending rate is lower than the upstream, the

5.2 Congestion Control Design

Requester-driven

rate controller

hopRTT
buffer length

Interest

piggyback

Requester Responder

Interest

parser

Interest

parser

Sending buffer
Data

parser

Data

data sending rate

next hop data sending rate

this hop

Interest

Rate

Limiter

data sending rate

this hop

Fig. 9: Congestion control in one hop.

upstream will decrease its sending rate actively to avoid packet
backlog at the intermediate node.

With the backpressure mechanism, LEOTP is able to react
quickly to bandwidth variations. The reason is that congestion
signals can spread from the bottleneck to the Producer at
a fast speed. When the node at the bottleneck lowers its
sending rate due to bandwidth variations, its buffer begins
to grow as its upstream node has a higher sending rate than
it. The buffer growth is fed back to the upstream node as
the congestion signal. Then the upstream node lowers its
sending rate too. In this way, when congestion occurs at the
bottleneck, all the upstream nodes will lower their sending
rate one by one. Finally, the source, i.e. Producer, will lower
its sending rate, avoiding too much data being sent to the
bottleneck. As congestion signals propagate back from the
bottleneck directly without being carried to the Consumer first,
the queuing delay and buffer overflows caused by delayed
feedback are effectively reduced.

The congestion control per hop is driven by the Requester
(i.e., the node sending Interest at this hop), as shown in
Fig. 9. The rate controller of the Requester collects the
network information and decides the sending rate of the hop.
Specifically, the rate is calculated by this hop’s RTT (hopRTT),
the buffer length of the Requester, and the next-hop sending
rate. It is piggybacked on Interests and sent to the Responder
(i.e., the node responding Data at this hop). Once receiving an
Interest, the Responder extracts the sending rate from it and
updates its Rate Limiter, which uses this rate to control the
data sending process by the token bucket algorithm.

We implement an RTT-based algorithm at each hop, which
use latency variations instead of packet losses as the conges-
tion signal. This is because packet losses can not represent
the congestion well in lossy links of LEO satellite networks.
Besides, we aim for low latency. So we need to adjust the
sending rate when the queue starts to build up but before the
loss due to buffer overflow occurs.

Like the RTT-based TCP-Vegas [20], we use hopRTT to
represent the actual hopRTT under load, and hopRTTmin

is the ideal value without queuing. As the responded data
may not be sent immediately, the measurement of per-packet
hopRTT is divided into two parts: OWD of Interest and OWD

of Data. The Requester writes a timestamp into each Interest
when sending it, then the Responder calculates its OWD when
receiving it. The OWD of Data is calculated in the same way.
These two OWDs are added up by the Requester to get the per-
packet hopRTT. The hopRTT is calculated by these hopRTT
samples using an exponentially weighted moving average to
filter the noise. The hopRTTmin is chosen as the minimal
hopRTT in the recent 5 seconds.

The congestion window cwnd is adjusted every hopRTT
following (8), where BDP is the bandwidth-delay product of
one hop and QueueLen is the estimated queuing length of the
underlying layer network. They are calculated as (6) and (7).
In the slow start phase and congestion avoidance phase, cwnd
follows multiplicative increase and additive increase policy
respectively. When QueueLen is greater than the threshold M,
LEOTP suppose congestion occurs and adjust the cwnd to
kBDP , where k is chosen as 0.8 in our implementation. This
is because BDP is the optimal operating point that fills up the
bandwidth while avoiding congestion. We decrease cwnd to a
value not much less than BDP to achieve faster recovery.

BDP = throughput ∗ hopRTTmin (6)

QueueLen = throughput ∗ (hopRTT − hopRTTmin) (7)

cwnd =

2 ∗ cwnd, if state == SlowStart

cwnd+ 1, else if QueueLen ≤M

k ∗BDP, otherwise
(8)

While cwnd aims for high bandwidth utilization at each
hop, the Requester also calculates an upper bound ratebp
according to the backpressure algorithm for inter-hop coor-
dination. Specifically, it is calculated by the current sending
buffer length BL and next-hop sending rate RatenextHop as
(9), where BLtar is the target length. As shown in (10), the
actual sending rate Rate is limited by both the cwnd and the
upper bound provided by the backpressure algorithm.

Ratebp = RatenextHop +
BL−BLtar

hopRTT
(9)

Rate = min(
cwnd

hopRTT
,Ratebp) (10)

IV. IMPLEMENTATION

A. Protocol Implementation

We implement LEOTP in the user space of Linux by C++.
The LEOTP packets are encapsulated in UDP transport, so
there is no need for modifications to lower layers and the oper-
ating system. Our implantation is also easy to be transferred to
other packet-based protocols. The passing-by UDP packets are
intercepted by every intermediate node, which is transparent
to endpoints. We config the netfilter [21] to achieve this goal,
which redirects the packet to a local socket without changing
the packet header in any way. And when the intermediate node
forwards a UDP packet, it actually creates a packet whose

TABLE I: Packet format of LEOTP

Interest Data Bytes
TYPE INT TYPE DATA 1

FlowID 4
rangeStart 4
rangeEnd 4
timestamp 4

sendRate length 2
/ payload 0-MSS

source and destination addresses are the endpoints’ addresses,
which is allowed by socket option IP TRANSPARENT [22]
supported in Linux 2.6.24+. In this way, the intermediate
process the packets without changing the forwarding path.
So, LEOTP is compatible with any extensively studied LEO
satellite network routing schemes [23], [24].

The cache is implemented with HashMap and uses LRU
replacement policy. The key is the FlowID and the byte range
of the packet, and the value is the memory address where the
payload is stored. To reduce the search time, we gather every
4096 consequent bytes in the same data flow to one block in
the cache. For example, when the [100, 1500) bytes of a data
flow are searched, the cache calculates that these 1400 bytes
are in the block with range [0, 4096), so the cache only needs
to read one block to get the data. In this way, the searching
and storing of one Data packet can be finished in O(1) time.

B. Packet Format

LEOTP has two kinds of packet: Interest and Data. The
total length of a LEOTP header is 15 bytes, and the Data
packet has a varying size of payload. TABLE I shows their
specific formats. FlowID is unique for each data flow, [rangeS-
tart,rangeEnd) represents the byte-level range in a flow. These
three fields form the identifier of a piece of data. The Interest
uses this to indicate the data it requests, and the Data use
this to present the payload it carries. timestamp represents
when the packet is sent by the previous node, which is used
to calculate hopRTT in hop-by-hop congestion control. The
sendRate in Interest packets is used to inform the Responder
of the expected sending rate. The length is consistent with the
range in a normal data packet and is set as 0 in a header.

V. EVALUATION

We evaluate the performance of LEOTP using the network
emulator Mininet [25]. First, we present a set of experi-
ments in controlled environments to verify the functions of
LEOTP modules. Then we further compare LEOTP with the
existing methods in emulated Starlink constellation.

A. Methodology

Experiment setting: The emulated Starlink experiments
are based on the core constellation of Starlink [26], which
has 1600 satellites evenly distributed on 32 orbital planes at
an altitude of 1150km with an inclination of 53 degrees to
the equator. The ground stations are supposed to be deployed
in the 100 most populous cities. We support two kinds of
Starlink networks. The first one is a network without ISLs,

0 100 200 300 400 500
OWD(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

LEOTP PLR=0.2%
BBR PLR=0.2%
LEOTP PLR=1%
BBR PLR=1%
LEOTP PLR=2%
BBR PLR=2%

Fig. 10: The distribution of the re-
transmitted packets’ OWD in lossy
link.

0.0 0.5 1.0 1.5 2.0
PLR(%)

100

105

110

115

120

Tr
af

fic
(M

by
te

)

LEOTP
BBR

Fig. 11: The relation of loss rate
and the traffic sent by sender for an
100MB file.

0.0 0.2 0.4 0.6 0.8 1.0
PLR(%)

0

5

10

15

20

Th
ro

ug
hp

ut
(M

bp
s)

LEOTP
BBR
PCC
Hybla
Cubic
Westwood

Fig. 12: The relation of loss rate and
throughput.

5 10 15 20
Link change interval(s)

0

5

10

15

20

Th
ro

ug
hp

ut
(M

bp
s)

LEOTP
BBR
PCC
Hybla
Cubic
Vegas

Fig. 13: The relation of topology
change frequency and throughput.

100 125 150 175 200 225 250
OWD(ms)

7.5

8.0

8.5

9.0

9.5

Th
ro

ug
hp

ut
(M

bp
s)

LEOTP
LEOTP(e2e)
BBR
PCC
Hybla
Cubic

Fig. 14: Throughput-OWD trade-off
under bandwidth fluctuations.

which is consistent with the current stage of Starlink. In
this network, a satellite can only connect to the ground
stations and the distance between the endpoints is limited. The
second network has ISLs, which represents the future stage of
Starlink. Transcontinental communication is enabled in this
network, which is the most typical yet challenging scene in
the application of LEO satellite networks [27].

Baseline: We choose several TCP variants as our baselines.
In addition to Cubic [14], Hybla [15], BBR [16], and PCC
[17] that appeared in the previous experiments, Westwood [28]
is another loss-based variant designed for wireless links, and
Vegas [20] represents the RTT-based algorithms.

B. Evaluation in Controlled Environments

Low cost for retransmission: We first examine the function
of in-network retransmission. The experiments are performed
in the network with 5 hops, each of which has 20Mbps band-
width and 20ms hopRTT. Fig. 10 shows the OWD distribution
of retransmitted packets in LEOTP and the end-to-end BBR.
The OWD of most retransmitted packets in BBR is about
160ms, which is an end-to-end RTT larger than the basic
OWD, while the value in LEOTP is only about 90ms, for the
loss can be recovered in hopRTT. With the help of in-network
retransmission, LEOTP reduces 59%-64% of average recovery
time under different PLR.

Fig. 11 shows the traffic the server actually sends when
transmitting 100MB data in the lossy link. The traffic increases
linearly with the PLR in both LEOTP and BBR, but the slope
of LEOTP is about 20% of BBR. This is because all lost
packets need to be resent by the end server in BBR, while
in LEOTP, only 20% of packet loss happens in the first hop,
which requires the server to retransmit. Packets lost at other

hops can be repaired by Midnodes’ cache. So LEOTP can
save the precious bottleneck bandwidth. In summary, the in-
network retransmission effectively reduces the retransmission
delay and bandwidth waste.

High throughput against high PLR: Fig. 12 shows the
throughput of LEOTP against high PLR in a 5-hop network
compared with the baselines. When the per-hop PLR is 0.1%,
the throughput of all the loss-based algorithms (Cubic, Hybla,
Westwood) drops to less than 5Mbps. BBR and PCC also
suffer a larger degradation than LEOTP, and the gap becomes
more visible as the PLR rises. When the PLR per hop changes
from 0 to 1%, the throughput of BBR and PCC decreases by
12% and 23%. However, LEOTP ’s throughput is reduced by
only 1%. The reason is LEOTP performs segmented control
and each hop has better link quality than the end-to-end link.

As a result, LEOTP also has better performance against link
switching. In Fig. 13, we set two parallel links with different
RTTs (80ms and 90ms). The bandwidth is 20Mbps in all hops.
The path changes between these two links periodically. With
the higher frequency of link changing, the throughput of all
TCP variants decreases, as link switching causes inevitable
packet loss. When the interval comes to 1s, LEOTP achieves
34% and 15% higher throughput than BBR and PCC respec-
tively. It is also interesting to note that Vegas behaves poorly
in this environment, for it is confused by the time-varying
RTT. Although LEOTP uses an RTT-based congestion control
algorithm in each hop, its performance is much better than
Vegas. This is because, in LEO satellite networks, the end-to-
end RTT fluctuates more violently due to the changing path,
while the RTT of each hop is relatively stable.

Low latency under bandwidth variations: Fig. 14 shows
the advantages of LEOTP under bandwidth variations. The

0 200 400 600 800 1000
Time(s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
(M

bp
s)

LEOTP Flow1
LEOTP Flow2
LEOTP Flow3

(a) LEOTP flows under same RTT

0 200 400 600 800 1000
Time(s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
(M

bp
s)

BBR Flow1
BBR Flow2
BBR Flow3

(b) BBR flows under same RTT

0 200 400 600 800 1000
Time(s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
(M

bp
s)

LEOTP Flow1
LEOTP Flow2
LEOTP Flow3

(c) LEOTP flows under different RTT

0 200 400 600 800 1000
Time(s)

0

1

2

3

4

5

Th
ro

ug
hp

ut
(M

bp
s)

BBR flow1
BBR flow2
BBR flow3

(d) BBR flows under different RTT

Fig. 15: Intra-protocol fairness under same RTT and different RTT.

0 50 100 150 200
OWD(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

LEOTP
BBR
PCC
Hybla

(a) OWD

0 2 4 6 8 10
Throughput(Mbps)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

LEOTP
BBR
PCC
Hybla

(b) throughput

Fig. 16: Cumulative distribution graph of OWD and through-
put in Beijing-Shanghai link without ISLs.

network has 10 hops, each of which has 20ms hopRTT. The
second hop is set as the bottleneck with an average bandwidth
of 10Mbps. It is added with a fluctuation in the form of a
square wave. The period is 2s and the amplitude is 1Mbps. The
bandwidth of other hops is 20Mbps. As the propagation delay
is 100ms, all the TCP algorithms have a high queuing delay
of over 100ms. While Cubic and Hybla fill up the buffer at the
bottleneck until packet loss occurs, BBR and PCC also fail to
control the queuing delay because of the long feedback cycle.
Although end-to-end LEOTP achieves near-optimal latency,
the throughput is quite low less than 8Mbps. This is because
it can not increase its sending rate rapidly with the increase
of bandwidth, and then the bandwidth drops again. However,
with the assistance of intermediate nodes, LEOTP achieves
both high throughput and low latency due to its quick reaction.
Each point of LEOTP corresponds to a configuration of target
buffer length at Midnodes. There is a trade-off between delay
and throughput. A larger buffer size has a smoothing effect
on bandwidth variations but also results in a longer queuing
delay. In practice, we can set this parameter according to the
preference of different applications.

Optimized intra-protocol fairness: To evaluate the fairness
and convergence, we set up a dumbbell topology with three
senders and three receivers sharing a bottleneck link with
5Mbps bandwidth and 30ms RTT, and choose BBR as the
baseline. The three flows initiate sequentially with a 200s
interval and run for 600s. When the three flows have the
same RTT of 60ms, they converge to a similar throughput
rapidly for both LEOTP and BBR, as shown in Fig. 15a and
Fig. 15b. However, in LEO satellite networks, it is common
that a long-distance flow and a short-distance flow share the
same bottleneck. To simulate this environment, we set the three
flows with 90ms, 120ms, and 150ms RTT respectively. As
shown in Fig. 15c and Fig. 15d, the BBR flow with higher RTT

0 200 400 600 800 1000
OWD(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

LEOTP
BBR
PCC
Hybla

(a) OWD

0 2 4 6 8 10
Throughput(Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

LEOTP
BBR
PCC
Hybla

(b) throughput

Fig. 17: Cumulative distribution graph of OWD and through-
put in Beijing-New York link with ISLs.

converges to higher throughput, while LEOTP still maintains
good fairness for them. This is because LEOTP performs hop-
by-hop congestion control. The three flows compete in exactly
the same segment, so the unfairness caused by different RTTs
is alleviated. In conclusion, the fairness and convergence speed
of LEOTP flows stay good in both the same-RTT and different-
RTT environments.

C. Evaluation in Emulated Starlink

The emulated Starlink environment is configured as follows:
(i) We use the parameters of the Starlink constellation. We
calculate the satellite locations and the routing result at any
time by the route computing module of HYPATIA [29], which
uses the Floyd-Warshall algorithm. The hopRTT is calculated
by the distance and the speed of light. (ii) GSL uplink is
the bottleneck with a maximum bandwidth of 10Mbps. The
bandwidth of other hops is 20Mbps. (iii) The PLR of GSLs
and ISLs is 1% and 0.1% respectively. (iv) The bandwidth of
GSL changes before and after handover like the ”V” curve
based on real trace [30]. A random bias within ±0.5Mbps is
added to simulate bandwidth fluctuations.

In the LEO satellite network without ISLs, we evaluate the
performance of the Beijing-Shanghai link, which is shown
in Fig. 16. Hybla’s throughput is far below the available
bandwidth because of packet loss. Hence no congestion occurs
and its delay is near-optimal. BBR and PCC achieve much
higher throughput, but their queuing delay is obvious under
bandwidth variations. As shown in Fig. 16a, while BBR has
an acceptable average queuing delay of 26ms, PCC’s queuing
delay is more than 400ms. With the advantages of hop-by-hop
congestion control, the throughput of LEOTP is 4.8% higher
than BBR, and 12.4% higher than PCC. It also reduces the
average queuing delay to 16ms, which is 0.61x of BBR.

BJ-HK BJ-PR BJ-NY0

100

200

300
OW

D(
m

s)
LEOTP
LEOTP(0.25)
BBR
PCC
Hybla
Cubic

(a) OWD

BJ-HK BJ-PR BJ-NY0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

bp
s)

LEOTP
LEOTP(0.25)
BBR
PCC
Hybla
Cubic

(b) throughput

Fig. 18: Average OWD and throughput in different city pair
links with ISLs.

In the LEO satellite network with ISLs, we evaluate the
links from Beijing to Hong Kong, Paris, and New York. The
distance from Beijing to these cities is 1968km, 8209km,
and 10991km, and the average hop count is 5.15, 9.53, and
18.88 respectively in our emulation. Fig. 17 shows the result
of the Beijing-New York link. In Fig. 17b, LEOTP achieves
about 8.0% higher throughput compared to BBR and 12.2% to
PCC, which is consistent with the environment without ISLs.
However, Fig. 17a shows that BBR also suffers a significantly
high queuing delay of 100ms due to the increased feedback
loop, while LEOTP maintains a low average queuing delay
of only 20ms. The effect of in-network retransmission is also
obvious with a large hop count and high end-to-end PLR.
The 99th percentile OWD of LEOTP is even 53ms lower than
Hybla, as the retransmission delay is significantly shortened.

In Fig. 18, we compare the results on the three links to
show how distance affects the performance of LEOTP and
TCP variants. As shown in Fig. 18a, with the increase of the
distance, the OWD of BBR and PCC increase rapidly because
of the problem of delayed feedback, while LEOTP always
keeps its OWD only 15ms-20ms higher than the ideal propaga-
tion delay. Fig. 18b shows that when the hop count increases,
the throughput of Cubic and Hybla decreases with higher
PLR. The throughput of LEOTP has no visible degradation
and maintains at least 4% higher than BBR and PCC. So we
conclude that LEOTP has more significant improvement in
long-distance communications. Interestingly, we also note
that LEOTP can achieve good performance with the as-
sistance of a small amount of LEO satellites. With only
25% coverage, LEOTP achieves higher throughput than BBR
and PCC in all environments, with a delay slightly lower than
that of full coverage. This means LEOTP’s Midnodes can be
flexibly deployed on part of the satellites to save costs.

At last, we show the respective contributions of the key
modules in LEOTP through an ablation experiment. The result
is shown in TABLE II, where A is LEOTP with complete
functions, B enables hop-by-hop congestion control but has no
cache, C enables in-network retransmission but the congestion
control is performed by endpoints, and D has no Midnodes.
When comparing A to C, and B to D respectively, we
can see hop-by-hop congestion control increases throughput
significantly in all scenarios, as it has a much quicker reaction
to changes of network conditions. In contrast, the end-to-end
congestion control of LEOTP is too conservative to achieve

TABLE II: The result of the ablation experiment

BJ-HK BJ-PR BJ-NY
Throughput

(Mbps)
OWD
(ms)

Throughput
(Mbps)

OWD
(ms)

Throughput
(Mbps)

OWD
(ms)

A 7.82 49.17 7.70 76.57 7.91 118.64
B 7.78 51.39 7.67 80.74 7.73 126.10
C 7.38 40.15 7.23 66.40 6.80 103.63
D 7.24 42.05 7.03 70.38 6.52 112.20

high link utilization. And when comparing A to B, and C to
D, we can see the effect of in-network retransmission in both
reducing latency and increasing throughput. The enhancement
becomes more apparent with the increase of distance and PLR.
In conclusion, both of the two modules contribute to the
better performance of LEOTP in LEO satellite networks.

VI. RELATED WORK

End-to-end transmission control. The classic TCP variants
designed for satellite networks such as Hybla and Peach [31]
aim at GEO satellite links, which is of little help in LEO
satellite networks. In recent years, several congestion control
algorithms for LEO is proposed. CCOSPF is based on Open
Short Path First (OSPF) [32]. [33] modifies the congestion
avoidance algorithm based on Westwood. Meanwhile, [12] in-
dicates QUIC can outperform TCP in space network scenarios
due to its zero handshaking and loss recovery mechanism.
However, these methods have the general limitations of end-
to-end transmission and lack of concern for queuing delay.

Proxy. Split TCP is the typical form of performance-
enhancing proxy (PEP). Ack filtering [34] uses proxies to filter
out part of the ACKs, which improves TCP’s performance
for highly asymmetric links. Snoop proxy [35] caches packets
for local retransmission and hides packet loss from the TCP
sender. However, the proxy does not perform loss detection
and the local retransmission only happens on the last hop.

ICN. ICN architecture uses a name-based rather than a
host-centric communication model. The transmission is pull-
based and driven by the receiver, and point-to-multipoint
communication is supported by in-network caching. Recent
studies [36], [37] investigate the ICN’s architectural benefits in
LEO satellite networks, such as mobility support and adaptive
forwarding. However, the current applications and protocols
are not compatible with ICN, so deploying ICN to LEO
satellite networks directly is difficult. INTCP [38] leverages
the information-centric paradigm in the transport layer for data
transmission in dynamic topology, but it lacks further design
on reliable transfer and congestion control.

Link layer control. FEC (Forward Error Correcting) and
link-level retransmission are designed to reduce BER on wire-
less links. However, a large portion of packet loss is caused
by congestion [5] and link switching [13] in LEO satellite
networks, which can not be repaired in link layer. In addition,
the independent retransmission in link layer and transport layer
may interfere with each other and lead to severe performance
degradation [39]. BFC [40] implements per-hop flow control
in the link layer, but this requires hardware support on each
switch, which is costly for LEO satellite networks.

10 20 30 40 50
Bandwidth(Mbps)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

CP
U

ut
iliz

at
io

n(
%

) PLR=0%
PLR=1%

Fig. 19: The CPU overhead of LEOTP.

VII. DISCUSSION

Scalability. Starlink claims that today’s LEO constellations
have a decent amount of general operating systems and pro-
gramming environments [41], which provides possibilities to
run LEOTP. Meanwhile, the overhead of LEOTP is low. First,
the algorithms have low complexity. So a Midnode spends
most of its processing time on I/O of packets. In Fig. 19,
we measure the CPU utilization of a Midnode under different
bandwidths and PLR. It shows that LEOTP maintains a low
CPU utilization. When the bandwidth exceeds 20Mbps, it
grows with bandwidth at a quite low speed and is not sensitive
to packet loss. Second, the cache at Midnodes mainly works
for in-network retransmission, so it only needs to store the
packets received in the past hopRTT. The hopRTT is usually
a few milliseconds, and a satellite can only communicate with
4 other satellites at the same time [27]. So a cache of a
few hundred MB is enough even if the link capacity of ISLs
reaches tens of GB, which is trivial compared to the memory
of modern devices. Moreover, the optimization of caching
strategy can further save memory usage. Third, although each
Midenode has to keep some per-flow states (e.g., congestion
status and sequence numbers), they are only tens of bytes for
each flow. Besides, these states are short-term active so can
be reconstructed rapidly upon failures.

Multicast. With the information-centric model, LEOTP has
the potential of multicast inherently. When several Consumers
request the same data at the same time, the cache in Midnodes
could block the duplicate Interests and respond data imme-
diately, avoiding duplicate data transmitting from upstream
nodes. This can be done if the Consumers share the same
FlowID. However, the multicast function puts higher require-
ments on the cache. If the cache can only store a piece of
data for several milliseconds, it is hard for other flows to
fetch this data. While the satellites are fast-moving and have
limited capabilities, a hierarchical cache at ground nodes that
leverages the disk can be designed to solve this problem.

Compatible with TCP. An alternative solution is to use
LEOTP only in the satellite segment. Transparent proxies are
deployed at ground stations to connect the territorial network
and LEOTP. In this way, the enhancement can be achieved
without change at the endpoints, which is more practical.
However, TCP is sender-driven with a stateful connection,
while LEOTP is a connectionless receiver-driven protocol, so
the bridging between them can be hard. The gateway designed

for carrying TCP/IP traffic in ICN networks [42], [43] may be
helpful to solve the contradiction problem.

VIII. CONCLUSION

To provide high-speed and low-latency Internet access on
LEO satellite links, it is necessary to make great innovations
on the transport layer. To this end, we propose an information-
centric transport layer protocol LEOTP. The Request-Response
model with in-network caching is the basis of the transport
layer, which supports the mobility of the intermediate satellite
nodes. The reliability is achieved at a minimal cost of delay
and bandwidth consumption with the help of in-network re-
transmission. The hop-by-hop congestion mechanism provides
accurate traffic control, avoiding congestion in the network
while maximizing link utilization. The extensive experiments
validate that LEOTP improves both throughput and delay in
LEO satellite networks remarkably.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valu-

able feedbacks. This work was sponsored by the NSFC
grant(U21B2012, 62032013, 62272258) and Guangdong Basic
and Applied Basic Research Foundation(2019B1515120031).
We gratefully acknowledge the support of State Key Lab-
oratory of Media Convergence Production Technology and
Systems and Key Laboratory of Intelligent Press Media Tech-
nology. Xinggong Zhang is the corresponding author.

REFERENCES

[1] Jonathan’s Space Report. Starlink statistics, November 2022. https:
//planet4589.org/space/stats/star/starstats.html.

[2] Yvon Henri. The oneweb satellite system. Handbook of Small
Satellites: Technology, Design, Manufacture, Applications, Economics
and Regulation, pages 1–10, 2020.

[3] Alan Boyle. Amazon to offer broadband access from orbit with
3,236-satellite ‘Project Kuiper’ constellation, April 2019. https://www.
geekwire.com/2019/amazon-project-kuiper-broadband-satellite/.

[4] Inigo Del Portillo, Bruce G Cameron, and Edward F Crawley. A
technical comparison of three low earth orbit satellite constellation
systems to provide global broadband. Acta astronautica, 159:123–135,
2019.

[5] François Michel, Martino Trevisan, Danilo Giordano, and Olivier
Bonaventure. A first look at starlink performance. In Proceedings of the
22nd ACM Internet Measurement Conference, IMC ’22, page 130–136,
New York, NY, USA, 2022. Association for Computing Machinery.

[6] Debopam Bhattacherjee and Ankit Singla. Network topology design at
27,000 km/hour. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies, CoNEXT ’19,
page 341–354, New York, NY, USA, 2019. Association for Computing
Machinery.

[7] Deepak Vasisht, Jayanth Shenoy, and Ranveer Chandra. L2d2: Low
latency distributed downlink for leo satellites. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 151–164,
New York, NY, USA, 2021. Association for Computing Machinery.

[8] Swastik Kopparty, Srikanth V Krishnamurthy, Michalis Faloutsos, and
Satish K Tripathi. Split tcp for mobile ad hoc networks. In Global
Telecommunications Conference, 2002. GLOBECOM’02. IEEE, vol-
ume 1, pages 138–142. IEEE, 2002.

[9] Stepanov Evgeniy and Voynov Nikita. Dynamic split tcp. In 2020
International Scientific and Technical Conference Modern Computer
Network Technologies (MoNeTeC), pages 1–9. IEEE, 2020.

[10] Zouhair El-Bazzal, Abdel Mehsen Ahmad, Mohamad Houssini, Ibrahim
El Bitar, and Zainab Rahal. Improving the performance of tcp over
wireless networks. In 2018 Sixth International Conference on Digi-
tal Information, Networking, and Wireless Communications (DINWC),
pages 12–17. IEEE, 2018.

[11] Li Jiang, Yihang Zhang, Jinyu Yin, Xinggong Zhang, and Bin Liu.
Leotp: An information-centric transport layer protocol for leo satellite
networks, May 2023. https://jl99888.github.io/LEOTP.

[12] Siyu Yang, Hewu Li, and Qian Wu. Performance analysis of quic
protocol in integrated satellites and terrestrial networks. In 2018 14th In-
ternational Wireless Communications & Mobile Computing Conference
(IWCMC), pages 1425–1430, 2018.

[13] Jirui Zhang, Shibing Zhu, Hefeng Bai, and Changqing Li. Optimization
strategy to solve transmission interruption caused by satellite-ground
link switching. IEEE Access, 8:32975–32988, 2020.

[14] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly
high-speed tcp variant. ACM SIGOPS operating systems review,
42(5):64–74, 2008.

[15] Carlo Caini and Rosario Firrincieli. Tcp hybla: a tcp enhancement for
heterogeneous networks. International journal of satellite communica-
tions and networking, 22(5):547–566, 2004.

[16] Neal Cardwell, Yuchung Cheng, S Hassas Yeganeh, Ian Swett, Victor
Vasiliev, Priyaranjan Jha, Yousuk Seung, Matt Mathis, and Van Jacob-
son. Bbrv2: A model-based congestion control. In Presentation in
ICCRG at IETF 104th meeting, 2019.

[17] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
P. Brighten Godfrey, and Michael Schapira. Pcc vivace: Online-learning
congestion control. In Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation, NSDI’18, page
343–356, USA, 2018. USENIX Association.

[18] Yannick Hauri, Debopam Bhattacherjee, Manuel Grossmann, and Ankit
Singla. ”internet from space” without inter-satellite links. In Proceedings
of the 19th ACM Workshop on Hot Topics in Networks, HotNets ’20,
page 205–211, New York, NY, USA, 2020. Association for Computing
Machinery.

[19] Matt Sargent, Jerry Chu, Dr. Vern Paxson, and Mark Allman. Computing
TCP’s Retransmission Timer. RFC 6298, June 2011.

[20] L.S. Brakmo and L.L. Peterson. Tcp vegas: end to end congestion
avoidance on a global internet. IEEE Journal on Selected Areas in
Communications, 13(8):1465–1480, 1995.

[21] The Netfilter’s webmasters. netfilter/iptables project homepage - The
netfilter.org project, January 2021. https://www.netfilter.org/.

[22] Jambit GmbH. ip(7) — linux manual page, February 2021. https://
man7.org/linux/man-pages/man7/ip.7.html.

[23] Tian Pan, Tao Huang, Xingchen Li, Yujie Chen, Wenhao Xue, and Yunjie
Liu. Opspf: orbit prediction shortest path first routing for resilient leo
satellite networks. In ICC 2019-2019 IEEE International Conference on
Communications (ICC), pages 1–6. IEEE, 2019.

[24] WANG Xuan, HOU Rong-hui, and XU Wei-lin. Dynamic path switching
technology for leo satellite networks. Journal of Beijing University of
Posts and Telecommunications, 43(2):80, 2020.

[25] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, pages 1–6,
2010.

[26] Jonathan C McDowell. The low earth orbit satellite population and
impacts of the spacex starlink constellation. The Astrophysical Journal
Letters, 892(2):L36, 2020.

[27] Mark Handley. Delay is not an option: Low latency routing in space.
In Proceedings of the 17th ACM Workshop on Hot Topics in Networks,
pages 85–91, 2018.

[28] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren
Wang. Tcp westwood: Bandwidth estimation for enhanced transport
over wireless links. In Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking, MobiCom ’01,
page 287–297, New York, NY, USA, 2001. Association for Computing
Machinery.

[29] Simon Kassing, Debopam Bhattacherjee, André Baptista Águas,
Jens Eirik Saethre, and Ankit Singla. Exploring the ”internet from
space” with hypatia. In Proceedings of the ACM Internet Measurement
Conference, IMC ’20, page 214–229, New York, NY, USA, 2020.
Association for Computing Machinery.

[30] Kiruthika Devaraj, Matt Ligon, Eric Blossom, Joseph Breu, Bryan
Klofas, Kyle Colton, and Ryan W Kingsbury. Planet high speed radio:
Crossing gbps from a 3u cubesat. 2019.

[31] Ian F Akyildiz, Giacomo Morabito, and Sergio Palazzo. Tcp-peach: a
new congestion control scheme for satellite ip networks. IEEE/ACM
Transactions on networking, 9(3):307–321, 2001.

[32] Siyuan Cao and Tao Zhang. Congestion control based on ospf in leo
satellite constellation. In 2019 IEEE 19th International Conference on
Communication Technology (ICCT), pages 1111–1115. IEEE, 2019.

[33] Fahrul Hakim Ayob, Shamala Subramaniam, Mohamed Othman, and
Zuriati Zulkarnain. An enhanced congestion control algorithm for leo
satellite networks. International Journal of Engineering & Technology,
7(4.31):363–367, 2018.

[34] Yoshiaki Ohta, Michiharu Nakamura, Yoshihiro Kawasaki, and
Takayoshi Ode. Controlling tcp ack transmission for throughput im-
provement in lte-advanced pro. In 2016 IEEE Conference on Standards
for Communications and Networking (CSCN), pages 1–6. IEEE, 2016.

[35] Milosh V Ivanovich. 5 enhancing tcp performance in hybrid networks.
Internet Networks: Wired, Wireless, and Optical Technologies, page 99,
2018.

[36] Zhongda Xia, Yu Zhang, Teng Liang, Xinggong Zhang, and Binxing
Fang. Adapting Named Data Networking (NDN) for Better Consumer
Mobility Support in LEO Satellite Networks, page 207–216. Association
for Computing Machinery, New York, NY, USA, 2021.

[37] Teng Liang, Zhongda Xia, Guoming Tang, Yu Zhang, and Beichuan
Zhang. Ndn in large leo satellite constellations: A case of consumer
mobility support. In Proceedings of the 8th ACM Conference on
Information-Centric Networking, ICN ’21, page 1–12, New York, NY,
USA, 2021. Association for Computing Machinery.

[38] Jinyu Yin, Li Jiang, Xinggong Zhang, and Bin Liu. Intcp: Information-
centric tcp for satellite network. In 2021 4th International Conference
on Hot Information-Centric Networking (HotICN), pages 86–91, 2021.

[39] A. DeSimone, Mooi Choo Chuah, and On-Ching Yue. Throughput
performance of transport-layer protocols over wireless lans. In Proceed-
ings of GLOBECOM ’93. IEEE Global Telecommunications Conference,
pages 542–549 vol.1, 1993.

[40] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mo-
hammad Alizadeh, and Thomas E. Anderson. Backpressure flow
control. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 779–805, Renton, WA, April 2022.
USENIX Association.

[41] Liam Tung. Spacex: We’ve launched 32,000 linux computers into
space for starlink internet, June 2020. https://www.zdnet.com/article/
spacex-weve-launched-32000-linux-computers-into-space-for-starlink-internet/.

[42] Ran Zhu, Tianlong Li, and Tian Song. igate: Ndn gateway for
tunneling over ip world. In 2021 International Conference on Computer
Communications and Networks (ICCCN), pages 1–9, 2021.

[43] Ilya Moiseenko and Dave Oran. Tcp/icn: Carrying tcp over content
centric and named data networks. In Proceedings of the 3rd ACM
Conference on Information-Centric Networking, ACM-ICN ’16, page
112–121, New York, NY, USA, 2016. Association for Computing
Machinery.

